Обзор приложеня Deeper — Умный Эхолот для телефона

Если с берега забросить датчик эхолота, то это позволит определить рельеф дна, глубину, а также наличие рыбы. Задача рыболова сводится к тому, чтобы правильно выбрать эхолот.

Каждому рыболову известно, что рыба в водоеме группируется в определенных участках, где она может прятаться, спать, размножаться, охотиться. Обычно их местообитания зависит от температуры воды, подводных течений, наличие рельефных объектов, под которыми легко можно укрыться от опасности.

Невооруженным глазом определить, где именно они находятся невозможно. Для этого используются устройства, позволяющие при помощи ультразвуковых излучений изучить рельеф дна и его глубину. Усовершенствованные модели позволяют определить зоны скопления рыбы и отмечать наиболее удачные места улова. Существует два основных вида эхолотов: стационарные и портативные, которые отличаются по функциональным возможностям, размерам и стоимости.

Такие устройства намного упрощают процесс рыбалки, но стоят дорого. Чтобы сэкономить средства, можно сделать эхолот своими руками.

Эхолот для рыбалки своими руками

Самоделки из двигателя от стиральной машины:
1. Как подключить двигатель от старой стиральной машины через конденсатор или без него 2. Самодельный наждак из двигателя стиральной машинки 3. Самодельный генератор из двигателя от стиральной машины 4. Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат 5. Гончарный круг из стиральной машины 6. Токарный станок из стиральной машины автомат 7. Дровокол с двигателем от стиральной машины 8. Самодельная бетономешалка

Cамодельный мини-эхолот на микроконтроллере Atmel ATMega8L

Читайте также:  Узола: малая река с большими сюрпризами (продолжение)

и

ЖКИ от мобильного телефона nokia3310

Представляю вашему вниманию авторскую разработку – самодельный мини-эхолот на микроконтроллере Atmel ATMega8L и ЖКИ от мобильного телефона nokia3310. Устройство рассчитано для повторения радиолюбителем средней квалификации, но, я думаю, конструкцию может повторить каждый желающий. Материал я старался изложить так, чтобы читателям в доступной форме дать побольше полезной информации по теме. Надеюсь, что повторение конструкции принесет Вам много удовольствия и пользы.

Буду рад ответить на ваши вопросы/пожелания/замечания и помочь в повторении конструкции.

С уважением, Alex

Эхолот, сонар (sonar) — сокращение от SOund NAvigation and Ranging. Эхолот известен где-то с 40-х годов, технология была разработана во время Второй мировой войны для отслеживания вражеских подводных лодок. В 1957 году компания Lowrance выпустила первый в мире эхолот на транзисторах для спортивной рыбной ловли.

Эхолот состоит из таких основных функциональных блоков: микроконтроллер, передатчик, датчик-излучатель, приемник и дисплей. Процесс обнаружения дна (или рыбы) в упрощенном виде выглядит следующим образом: передатчик выдает электрический импульс, датчик-излучатель преобразует его в ультразвуковую волну и посылает в воду (частота этой ультразвуковой волны такова, что она не ощущается ни человеком, ни рыбой). Звуковая волна отражается от объекта (дно, рыба, другие объекты) и возвращается к датчику, который преобразует его в электрический сигнал (см. рисунок ниже).

Приемник усиливает этот возвращенный сигнал и посылает его в микропроцессор. Микропроцессор обрабатывает принятый с датчика сигнал и посылает его на дисплей, где мы уже видим изображение объектов и рельефа дна в удобном для нас виде.

На что следует обратить внимание: рельеф дна эхолот рисует только в движении. Это утверждение вытекает из принципа действия эхолота. Тоесть, если лодка неподвижна, то и информация о рельефе дна неизменна, и последовательность значений будет складываться из одинаковых, абсолютно идентичных значений. На экране при этом будет рисоваться прямая линия.

Первый вопрос, который, я уверен, возникнет у читателей «Почему использован такой маленький дисплей?» Поэтому я сразу на него отвечу: этот «мини-эхолотик» разрабатывался по просьбе знакомого из того, что оказалось под рукой. А этими подручными средствами оказались ATMega8L, дисплей от nokia3310 и какой-то излучатель с обозначением f=200kHz. Еще Вы, наверное, спросите возможно ли переделать программу/схему под другой, больший дисплей? Да. Теоретически это возможно.

От эхолотов, описанных в [1, 2, 3] моя конструкция отличается применением графического ЖК дисплея, что дает устройству преимущества в отображении полезной информации.

Вся конструкция собрана в корпусе «Z14». Питание обеспечивается от аккумулятора 9В GP17R9H. Максимальный потребляемый ток не более 30 мА (в авторском варианте 23мА).

Теперь о возможностях эхолота. Рабочая частота 200 кГц и настраивается под конкретный имеющийся излучатель. Программно реализована возможность измерять глубину до 99,9 метров. Но скажу сразу: максимальная глубина, которую сможет «видеть» эхолот, в большой степени будет зависеть от параметров примененного излучателя. Моя конструкция на данное время тестировалась только на водоеме с максимальной глубиной около 4 м. Прибор показал отличные результаты. По мере возможности постараюсь протестировать работу эхолота на более больших глубинах, о чем будет сообщено читателям.

Итак, перейдем к схеме. Схема мини-эхолота показана на рисунке ниже:

Основные функциональные блоки эхолота: схема управления (тоесть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.

Читайте также:  Рыбалка в Калмыкии, в Лагани, отзывы о поездке с фото 2020

Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4. Далее сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.

Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.

Сигнал с приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.

Далее сигнал обрабатывается в микроконтроллере и отображается в нужном виде на графическом ЖК дисплее 84х48 точек.

Трансформатор Т1 передатчика намотан на сердечнике К16*8*6 из феррита M1000НМ. Первична обмотка наматывается в 2 провода и содержит 2х14 витков, вторичная – 150 витков провода ПЭВ-2 0,21мм. Первой мотается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.

Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам? Вариант 1: приобрести готовый датчик. Вариант 2: изготовить самому из пьезокерамики ЦТС-19.

При прошивке микроконтроллера ATMega8L fuse bits выставить согласно картинке ниже :

Полная информация по изготовлению, настройке, прошивке и руководству по использованию мини-эхолота

смотрите в прилагаемом архиве!

Основные характеристики датчика

Эффективность работы устройства в первую очередь определяется его мощностью. У портативных сонаров она редко превышает 300 Вт. Модели с таким потенциалом оптимально подойдут для обычной ловли с берега при дальности заброса порядка 30-40 м. Мощность влияет на глубину обнаружения, которая может достигать от нескольких десятков до сотен метров – в диапазонах 40-500 м работает большинство моделей. На дальность излучения повлияет и частота. Чем она ниже, тем выше радиус действия. К примеру, 50 кГц обеспечат те самые 500 м. Но важно учитывать, что на функцию беспроводного датчика эхолота для смартфона повлияют и характеристики воды. Так, в условиях повышенной минерализации глубина мониторинга может сократиться вдвое. При этом не стоит ориентироваться исключительно на мощность с частотой. Важен и угол сканирования, который в среднем варьируется от 15° до 45°. Это величина охвата подводного пространства – соответственно, от узкого поля к широкому.

Эхолот для рыбалки своими руками

для этой схемы Основные функциональные блоки эхолота: схема управления (то есть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.

Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4, нагрузкой которых является трансформатор Т1. Сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.

Тест беспроводных эхолотов для смартфонов Deeper с Bluetooth и Vexilar с Wi-Fi

А теперь мы протестируем два беспроводных устройства. Они предназначены для ловли в зимнее время года. Эхолоты имеют ряд различий.

Общие Плюсы

Общие плюсы Deeper и Vexilar:

  • Можно применять как на воде, так и на берегу.
  • Большое количество дополнительных функций.
  • Отображается чёткая картинка.
  • Небольшой вес и компактные размеры.
  • Изготовлены из качественных материалов.
  • Совместимость с устройствами под управлением iOS и Android.

Отличия Эхолотов

А теперь рассмотрим различия:

Читайте также:  Река Битца: где находится, исток, протяженность, глубина, природа и рыбалка

  • На Deeper изображение формируется только после специальной обработки.
  • В приложение Deeper есть большое количество функци в приложение Vexilar ограниченный набор функций.
  • Deeper очень просто прикрепить к лодке. Для этого нужно использовать специальное крепление.
  • Цветовая окраска Vexilar сразу бросается в глаза а вет Deeper плохо видно на воде.
  • У Vexilar нельзя обновлять прошивку.

Эхолот рыболова-любителя своими руками.

Структурная схема, поясняющая устройство и работу эхолота, показана на рис. 1. Тактовый генератор G1 управляет взаимодействием узлов прибора и обеспечивает его работу в автоматическом режиме. Генерируемые им короткие (0,1 с) прямоугольные импульсы положительной полярности повторяются каждые 10 с. Своим фронтом эти импульсы устанавливают цифровой счетчик РС1 в нулевое состояние и закрывают приемник А2, делая его нечувствительным к сигналам на время работы передатчика.

По окончании работы передатчика приемник А2 открывается и приобретает нормальную чувствительность. Эхосигнал, отраженный от дна, принимается датчиком BQ1 и после усиления в приемнике закрывает ключ S1. Измерение закончено, и индикаторы счетчика РС1 высвечивают измеренную глубину. Очередной тактовый импульс вновь переводит счетчик РС1 в нулевое состояние, и процесс повторяется.

Принципиальная схема эхолота с пределом измерения глубины до 59,9 м изображена на рис. 2. Его передатчик представляет собой двухтактный генератор на транзисторах VT8, VT9 с настроенным на рабочую частоту трансформатором Т1. Необходимую для самовозбуждения генератора положительную обратную связь создают цепи R19C9 и R20C11.

Генератор формирует импульсы длительностью 40 мкс с радиочастотным заполнением. Работой передатчика управляет модулятор, состоящий из одновибратора на транзисторах VT11, VT12, формирующего модулирующий импульс длительностью 40 мкс, и усилителя на транзисторе VT10. Модулятор работает в ждущем режиме, запускающие тактовые импульсы поступают через конденсатор С14.

Приемник эхолота собран по схеме прямого усиления. Транзисторы VT1, VT2 усиливают принятый излучателем-датчиком BQ1 эхосигнал, транзистор VT3 использован а амплитудном детекторе, транзистор VT4 усиливает продетектированный сигнал. На транзисторах VT5, VT6 собран одновибратор, обеспечивающий постоянство параметров выходных импульсов и порога чувствительности приемника. От импульса передатчика приемник защищают диодный ограничитель (VD1, VD2) и резистор R1. В приемнике применено принудительное выключение одновибратора приемника с помощью транзистора VT7. На его базу через диод VD3 поступает положительный тактовый импульс и заряжает конденсатор С8. Открываясь, транзистор VT7 соединяет базу транзистора VT5 одновибратора приемника с положительным проводом питания, предотвращая тем самым возможность его срабатывания от приходящих импульсов. По окончании тактового импульса конденсатор С8 разряжается через резистор R18, транзистор VT7 постепенно закрывается, и одновибратор приемника обретает нормальную чувствительность. Цифровая часть эхолота собрана на микросхемах DD1-DD4. В ее состав входит ключ на элементе DD1.1, управляемый RS-триггером на элементах DD1.3, DD1.4. Импульс начала счета поступает на триггер от модулятора передатчика через транзистор VT16, окончания — с выхода приемника через транзистор VT15. Генератор импульсов с образцовой частотой повторения (7500 Гц) собран на элементе DD1.2. Из резистора R33 и катушки L1 составлена цепь отрицательной обратной связи, выводящей элемент на линейный участок характеристики. Это создает условия для самовозбуждения на частоте, определяемой параметрами контура L1C18. Точно на заданную частоту генератор настраивают подстроечником катушки. Сигнал образцовой частоты через ключ поступает на трехразрядный счетчик DD2-DD4. В нулевое состояние его устанавливает фронт тактового импульса, поступающего через диод VD4 на входы R микросхем. Тактовый генератор, управляющий работой эхолота, собран на транзисторах разной структуры VT13, VT14. Частота следования импульсов определена постоянной времени цепи R28C15. Катоды индикаторов HG1-HG3 питает генератор на транзисторах VT17, VT18 [2]. Кнопка SB1 («Контроль») служит для проверки работоспособности устройства. При нажатии на нее на ключ VT15 поступает закрывающий импульс и индикаторы эхолота высвечивают случайное число. Через некоторое время тактовый импульс переключает счетчик, и индикаторы должны высветить число 888, что свидетельствует об исправности эхолота.

Модель Deeper Smart Sonar

Одна из лучших моделей портативных эхолокаторов в сегменте от известного эстонского производителя Deeper. К особенностям аппарата относится наличие двух точек излучения – трансдьюсеры с частотами 90 и 290 кГц охватывают углы на 55° до 15°. Это значит, что датчик эхолота для смартфона будет отражать на экране рыбу с высокой детализацией. Функциональность модели тоже заслуживает внимания. Устройство имеет GPS-модуль, поэтому данные сканирования могут накладываться на реальную картографическую схему в специальном приложении. Данная возможность позволяет фиксировать информацию о посещенных объектах.

Высокая мощность датчика негативно отразилась на автономности. Если нужен зимний эхолот для смартфона, то придется рассчитывать не более чем на 5 ч работы на одном заряде. Причем восполняется объем аккумулятора не менее 2 ч. К минусам этого предложения можно отнести и высокую стоимость, которая составляет порядка 20 тыс. руб.

Что такое глубиномер для рыбалки?

Основным залогом успеха на любом водоеме является то, насколько правильно и тщательно рыболов определит глубину в месте ловли. От этого зависит грамотный выбор конкретной точки для заброса оснастки, ее особенности и прочие технические нюансы, влияющие на результативность ужения. Издавна для этих целей применялся глубиномер для рыбалки, позволяющий решить поставленную задачу.

Устройства для определения глубины и рельефа дна используются круглый год. Их применяют со льда либо по открытой воде, с ними можно проводить измерения, находясь в лодке или на берегу. Различные варианты глубиномеров позволяют рыболову выбрать оптимальную модификацию под конкретную ситуацию и собственные предпочтения, чтобы в процессе ловли ощущать себя максимально комфортно и непринужденно.

Рекомендации по выбору

  • Прежде, чем отправляться за покупкой «помощника», нужно определиться, какой прибор и, с каким набором функций необходим. Естественно, что для начинающего рыболова набор дополнительных функций ни о чем не говорит. Лишь со временем придет понимание того, каких функций не хватает для удобства рыбалки.
  • Если занятие рыбной ловлей стоит на первом месте и рыболову ради этого ничего не жалко, то универсальный прибор никогда не помешает. Если человек выезжает на рыбалку от случая к случаю, то можно остановить свой выбор на примитивном устройстве.
  • В любом случае, следует отдать предпочтение устройству с чувствительным приемником.
  • Наличие дополнительных функций повышает комфортные условия рыбалки.
Понравилась статья? Поделиться с друзьями: